Dual Presentation and Linear Basis of Temperley-lieb Algebra

نویسنده

  • SANG JIN LEE
چکیده

The braid groups map homomorphically into the Temperley-Lieb algebras. Recently, Zinno showed that the homomorphic images of the simple elements arising from the dual presentation of the braid groups form a basis for the vector space underlying the Temperley-Lieb algebras. We give a simple geometric proof of his theorem, using a new presentation of the Temperley-Lieb algebras that corresponds to the dual presentation of the braid groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Presentation and Linear Basis of the Temperley-lieb Algebras

The braid groups map homomorphically into the Temperley-Lieb algebras. Recently, Zinno showed that the homomorphic images of the simple elements arising from the dual presentation of the braid groups form a basis for the vector space underlying the Temperley-Lieb algebras. We give a simple geometric proof of his theorem, using a new presentation of the Temperley-Lieb algebras that corresponds t...

متن کامل

A pr 2 00 6 DUAL PRESENTATION AND LINEAR BASIS OF THE TEMPERLEY - LIEB

The braid group Bn maps homomorphically into the TemperleyLieb algebra TLn. It was shown by Zinno that the homomorphic images of simple elements arising from the dual presentation of the braid group Bn form a basis for the vector space underlying the Temperley-Lieb algebra TLn. In this paper, we establish that there is a dual presentation of Temperley-Lieb algebras that corresponds to the dual ...

متن کامل

ar X iv : q - a lg / 9 71 20 46 v 2 2 8 Se p 19 98 Web bases for sl ( 3 ) are not dual canonical

or its invariant space Inv(V1 ⊗ V2 ⊗ . . .⊗ Vn). The quantum group Uq(g) has representations and vector spaces of invariants which generalize these, and one can also study their bases, with or without the intention of specializing to q = 1. (For simplicity, we will usually consider Uq(g) as an algebra over C(q ), and we will only occassionally mention Z[q] as a ground ring.) Lusztig’s remarkabl...

متن کامل

On One Algebra of Temperley–Lieb Type

An algebra generated by projections with relations of Temperley–Lieb type is considered. Knowledge of Gröbner basis of the ideal allows to find a linear basis of the algebra. Some questions of representation theory for this algebra were studied in [13]. Obtained in the present paper are the additional relations, which hold in all finite-dimensional irreducible ∗-representations, although they d...

متن کامل

Diagonal Temperley-lieb Invariants and Harmonics

In the context of the ring Q[x,y], of polynomials in 2n variables x = x1, . . . , xn and y = y1, . . . , yn, we introduce the notion of diagonally quasisymmetric polynomials. These, also called diagonal Temperley-Lieb invariants, make possible the further introduction of the space of diagonal Temperley-Lieb harmonics and diagonal Temperley-Lieb coinvariant space. We present new results and conj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004